Serveur d'exploration sur l'agrobacterium et la transgénèse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Development and optimization of agroinfiltration for soybean.

Identifieur interne : 000358 ( Main/Exploration ); précédent : 000357; suivant : 000359

Development and optimization of agroinfiltration for soybean.

Auteurs : Jessica L. King [États-Unis] ; John J. Finer ; Leah K. Mchale

Source :

RBID : pubmed:25326714

Descripteurs français

English descriptors

Abstract

KEY MESSAGE

Agroinfiltration is an efficient method to study transgene expression in plant tissue. In this study, sonication followed by vacuum infiltration is shown to increase agroinfiltration-mediated GUS expression in soybean. Agroinfiltration, a valuable tool for rapid analysis of gene function, has been used extensively on leaf tissue of Nicotiana benthamiana and several other plant species. However, the application of this approach for gene functionality studies in soybean has been largely unsuccessful. Improvements in agroinfiltration of many plants have been achieved through a variety of approaches to allow better delivery, penetration and infection of Agrobacterium to interior leaf tissues. In this work, an agroinfiltration approach was developed for transient expression in soybean utilizing sonication followed by vacuum infiltration of intact seedlings. The optimal infiltration buffer, sonication time, and vacuum conditions for agroinfiltration of soybean were evaluated by monitoring expression of an introduced β-glucuronidase (GUS) reporter gene. The developed method included the use of an infiltration buffer (10 mM 2-(N-morpholino)ethanesulfonic acid sodium salt, 10 mM MgCl2, 100 µM acetosyringone) supplemented with the reducing agent dithiothreitol, with 30 s sonication followed by vacuum infiltration. These techniques were further applied to evaluate five different Agrobacterium strains and six different plant genetic backgrounds. Among the Agrobacterium strains examined, J2 produced the highest levels of GUS activity and 'Peking' was the most responsive genotype.


DOI: 10.1007/s00299-014-1694-4
PubMed: 25326714


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Development and optimization of agroinfiltration for soybean.</title>
<author>
<name sortKey="King, Jessica L" sort="King, Jessica L" uniqKey="King J" first="Jessica L" last="King">Jessica L. King</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, 43210, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, 43210</wicri:regionArea>
<wicri:noRegion>43210</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Finer, John J" sort="Finer, John J" uniqKey="Finer J" first="John J" last="Finer">John J. Finer</name>
</author>
<author>
<name sortKey="Mchale, Leah K" sort="Mchale, Leah K" uniqKey="Mchale L" first="Leah K" last="Mchale">Leah K. Mchale</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25326714</idno>
<idno type="pmid">25326714</idno>
<idno type="doi">10.1007/s00299-014-1694-4</idno>
<idno type="wicri:Area/Main/Corpus">000377</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000377</idno>
<idno type="wicri:Area/Main/Curation">000377</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000377</idno>
<idno type="wicri:Area/Main/Exploration">000377</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Development and optimization of agroinfiltration for soybean.</title>
<author>
<name sortKey="King, Jessica L" sort="King, Jessica L" uniqKey="King J" first="Jessica L" last="King">Jessica L. King</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, 43210, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, 43210</wicri:regionArea>
<wicri:noRegion>43210</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Finer, John J" sort="Finer, John J" uniqKey="Finer J" first="John J" last="Finer">John J. Finer</name>
</author>
<author>
<name sortKey="Mchale, Leah K" sort="Mchale, Leah K" uniqKey="Mchale L" first="Leah K" last="Mchale">Leah K. Mchale</name>
</author>
</analytic>
<series>
<title level="j">Plant cell reports</title>
<idno type="eISSN">1432-203X</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agrobacterium (classification)</term>
<term>Agrobacterium (genetics)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Gene Transfer Techniques (MeSH)</term>
<term>Glucuronidase (genetics)</term>
<term>Glucuronidase (metabolism)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Seedlings (genetics)</term>
<term>Seedlings (metabolism)</term>
<term>Sonication (MeSH)</term>
<term>Soybeans (genetics)</term>
<term>Soybeans (metabolism)</term>
<term>Species Specificity (MeSH)</term>
<term>Time Factors (MeSH)</term>
<term>Vacuum (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Agrobacterium (classification)</term>
<term>Agrobacterium (génétique)</term>
<term>Facteurs temps (MeSH)</term>
<term>Glucuronidase (génétique)</term>
<term>Glucuronidase (métabolisme)</term>
<term>Plant (génétique)</term>
<term>Plant (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Soja (génétique)</term>
<term>Soja (métabolisme)</term>
<term>Sonication (MeSH)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Techniques de transfert de gènes (MeSH)</term>
<term>Vide (MeSH)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glucuronidase</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Agrobacterium</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Agrobacterium</term>
<term>Seedlings</term>
<term>Soybeans</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Agrobacterium</term>
<term>Glucuronidase</term>
<term>Plant</term>
<term>Soja</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glucuronidase</term>
<term>Seedlings</term>
<term>Soybeans</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glucuronidase</term>
<term>Plant</term>
<term>Soja</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Gene Transfer Techniques</term>
<term>Plants, Genetically Modified</term>
<term>Sonication</term>
<term>Species Specificity</term>
<term>Time Factors</term>
<term>Vacuum</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Facteurs temps</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Sonication</term>
<term>Spécificité d'espèce</term>
<term>Techniques de transfert de gènes</term>
<term>Vide</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>KEY MESSAGE</b>
</p>
<p>Agroinfiltration is an efficient method to study transgene expression in plant tissue. In this study, sonication followed by vacuum infiltration is shown to increase agroinfiltration-mediated GUS expression in soybean. Agroinfiltration, a valuable tool for rapid analysis of gene function, has been used extensively on leaf tissue of Nicotiana benthamiana and several other plant species. However, the application of this approach for gene functionality studies in soybean has been largely unsuccessful. Improvements in agroinfiltration of many plants have been achieved through a variety of approaches to allow better delivery, penetration and infection of Agrobacterium to interior leaf tissues. In this work, an agroinfiltration approach was developed for transient expression in soybean utilizing sonication followed by vacuum infiltration of intact seedlings. The optimal infiltration buffer, sonication time, and vacuum conditions for agroinfiltration of soybean were evaluated by monitoring expression of an introduced β-glucuronidase (GUS) reporter gene. The developed method included the use of an infiltration buffer (10 mM 2-(N-morpholino)ethanesulfonic acid sodium salt, 10 mM MgCl2, 100 µM acetosyringone) supplemented with the reducing agent dithiothreitol, with 30 s sonication followed by vacuum infiltration. These techniques were further applied to evaluate five different Agrobacterium strains and six different plant genetic backgrounds. Among the Agrobacterium strains examined, J2 produced the highest levels of GUS activity and 'Peking' was the most responsive genotype.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25326714</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>09</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-203X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>34</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Plant cell reports</Title>
<ISOAbbreviation>Plant Cell Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Development and optimization of agroinfiltration for soybean.</ArticleTitle>
<Pagination>
<MedlinePgn>133-40</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00299-014-1694-4</ELocationID>
<Abstract>
<AbstractText Label="KEY MESSAGE" NlmCategory="CONCLUSIONS">Agroinfiltration is an efficient method to study transgene expression in plant tissue. In this study, sonication followed by vacuum infiltration is shown to increase agroinfiltration-mediated GUS expression in soybean. Agroinfiltration, a valuable tool for rapid analysis of gene function, has been used extensively on leaf tissue of Nicotiana benthamiana and several other plant species. However, the application of this approach for gene functionality studies in soybean has been largely unsuccessful. Improvements in agroinfiltration of many plants have been achieved through a variety of approaches to allow better delivery, penetration and infection of Agrobacterium to interior leaf tissues. In this work, an agroinfiltration approach was developed for transient expression in soybean utilizing sonication followed by vacuum infiltration of intact seedlings. The optimal infiltration buffer, sonication time, and vacuum conditions for agroinfiltration of soybean were evaluated by monitoring expression of an introduced β-glucuronidase (GUS) reporter gene. The developed method included the use of an infiltration buffer (10 mM 2-(N-morpholino)ethanesulfonic acid sodium salt, 10 mM MgCl2, 100 µM acetosyringone) supplemented with the reducing agent dithiothreitol, with 30 s sonication followed by vacuum infiltration. These techniques were further applied to evaluate five different Agrobacterium strains and six different plant genetic backgrounds. Among the Agrobacterium strains examined, J2 produced the highest levels of GUS activity and 'Peking' was the most responsive genotype.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>King</LastName>
<ForeName>Jessica L</ForeName>
<Initials>JL</Initials>
<AffiliationInfo>
<Affiliation>Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, 43210, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Finer</LastName>
<ForeName>John J</ForeName>
<Initials>JJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>McHale</LastName>
<ForeName>Leah K</ForeName>
<Initials>LK</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>10</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Plant Cell Rep</MedlineTA>
<NlmUniqueID>9880970</NlmUniqueID>
<ISSNLinking>0721-7714</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>EC 3.2.1.31</RegistryNumber>
<NameOfSubstance UI="D005966">Glucuronidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D060054" MajorTopicYN="N">Agrobacterium</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018014" MajorTopicYN="Y">Gene Transfer Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005966" MajorTopicYN="N">Glucuronidase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036226" MajorTopicYN="N">Seedlings</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013010" MajorTopicYN="N">Sonication</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013025" MajorTopicYN="N">Soybeans</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014618" MajorTopicYN="N">Vacuum</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>06</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>10</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>09</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>10</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>10</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>9</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25326714</ArticleId>
<ArticleId IdType="doi">10.1007/s00299-014-1694-4</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 1985 Jan;77(1):87-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16664035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1989 May;8(5):274-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24233224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2007 Sep;26(9):1501-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17503049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2010 Sep;11(5):641-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20696002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1978 Nov;136(2):775-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">711678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 May;153(1):52-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20200069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2010 May 07;3:9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20459651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2005 Mar;3(2):259-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17173625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2008 Dec;21(12):1528-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18986249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2006;1(4):2019-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17487191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2011 Dec;30(12):2281-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21853337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2008 Aug;21(8):1027-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18616399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Jan;21(1):73-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10652152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Oct;56(1):169-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18643979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2009;4(11):1699-707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19876029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2008 May;27(5):845-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18256839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2005;286:203-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15310923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 Sep 2;21(17):4511-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12198153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rice (N Y). 2012 Aug 31;5(1):23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24279881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(12):e28765</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22194907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2007 Nov;5(6):778-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17764520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Aug;150(4):1733-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19571308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2007 Sep;48(9):1243-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17675322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 2012 Sep-Oct;28(5):1321-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22848046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Feb;22(2):123-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19132865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Jan 14;463(7278):178-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20075913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plasmid. 1978 Feb;1(2):238-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">748949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Jun;22(6):543-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10886774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2000 Apr;13(4):439-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10755307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1994 Jul;13(10):561-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24196221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2009 Feb 15;102(3):965-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18819157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2009 Mar;28(3):387-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19048258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1990 May;79(5):654-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24226580</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Finer, John J" sort="Finer, John J" uniqKey="Finer J" first="John J" last="Finer">John J. Finer</name>
<name sortKey="Mchale, Leah K" sort="Mchale, Leah K" uniqKey="Mchale L" first="Leah K" last="Mchale">Leah K. Mchale</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="King, Jessica L" sort="King, Jessica L" uniqKey="King J" first="Jessica L" last="King">Jessica L. King</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/AgrobacTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000358 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000358 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    AgrobacTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25326714
   |texte=   Development and optimization of agroinfiltration for soybean.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25326714" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a AgrobacTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 15:45:55 2020. Site generation: Wed Mar 6 15:24:41 2024